翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

strain energy density function : ウィキペディア英語版
strain energy density function

A strain energy density function or stored energy density function is a scalar valued function that relates the strain energy density of a material to the deformation gradient.
:
W = \hat(\boldsymbol) = \hat(\boldsymbol^T\cdot\boldsymbol) =\bar(\boldsymbol) = \bar(\boldsymbol^\cdot\boldsymbol)=\tilde(\boldsymbol,\boldsymbol)

Equivalently,
:
W = \hat(\boldsymbol) = \hat(\boldsymbol^T\cdot\boldsymbol\cdot\boldsymbol) =\tilde(\boldsymbol,\boldsymbol)

where \boldsymbol is the (two-point) deformation gradient tensor, \boldsymbol is the right Cauchy-Green deformation tensor, \boldsymbol is the left Cauchy-Green deformation tensor,
and \boldsymbol is the rotation tensor from the polar decomposition of \boldsymbol.
For an anisotropic material, the strain energy density function \hat(\boldsymbol) depends implicitly on reference vectors or tensors (such as the initial orientation of fibers in a composite) that characterize internal material texture. The spatial representation, \tilde(\boldsymbol,\boldsymbol) must further depend explicitly on the polar rotation tensor \boldsymbol to provide sufficient information to convect the reference texture vectors or tensors into the spatial configuration.
For an isotropic material, consideration of the principle of material frame indifference leads to the conclusion that the strain energy density function depends only on the invariants of \boldsymbol (or, equivalently, the invariants of \boldsymbol since both have the same eigenvalues). In other words, the strain energy density function can be expressed uniquely in terms of the principal stretches or in terms of the invariants of the left Cauchy-Green deformation tensor or right Cauchy-Green deformation tensor and we have:
For isotropic materials,
:
W = \hat(\lambda_1,\lambda_2,\lambda_3) = \tilde(I_1,I_2,I_3) = \bar(\bar_1,\bar_2,J) = U(I_1^c, I_2^c, I_3^c)

with
:
\begin
\bar_1 & = J^~I_1 ~;~~ I_1 = \lambda_1^2 + \lambda_2 ^2+ \lambda_3 ^2 ~;~~ J = \det(\boldsymbol) \\
\bar_2 & = J^~I_2 ~;~~ I_2 = \lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_3^2 \lambda_1^2
\end

For linear isotropic materials undergoing small strains, the strain energy density function specializes to
:W = \frac\sum_^\sum_^\sigma_\epsilon_ = \frac(\sigma_x\epsilon_x+\sigma_y\epsilon_y+\sigma_z\epsilon_z+\tau_\gamma_+\tau_\gamma_+\tau_\gamma_)
A strain energy density function is used to define a hyperelastic material by postulating that the stress in the material can be obtained by taking the derivative of W with respect to the strain. For an isotropic, hyperelastic material the function relates the energy stored in an elastic material, and thus the stress-strain relationship, only to the three strain (elongation) components, thus disregarding the deformation history, heat dissipation, stress relaxation etc.
For isothermal elastic processes, the strain energy density function relates to the Helmholtz free energy function \psi,
:
W = \rho_0 \psi \;.

For isentropic elastic processes, the strain energy density function relates to the internal energy function u,
:
W = \rho_0 u \;.

== Examples of strain energy density functions ==
Some examples of hyperelastic constitutive equations are〔Muhr, A. H. (2005). Modeling the stress-strain behavior of rubber. Rubber chemistry and technology, 78(3), 391-425. ()〕
*Saint Venant–Kirchhoff
*Neo-Hookean
*Generalized Rivlin
*Mooney–Rivlin
*Ogden
*Yeoh
*Arruda–Boyce model
*Gent

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「strain energy density function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.